In the sulphonate group electron densities are found in all S-O bonds and negative regions occur between the bonds. Negative regions are also observed at all oxygen sites, in agreement with earlier studies ($c f$. Almlöf, Kvick \& Thomas, 1973). Electron densities corresponding to the lone pairs are observed around all oxygen atoms, but the densities are in most cases smeared so that no lone-pair directions can be deduced from the maps.

We wish to express our gratitude to Professor I. Olovsson for the facilities made available to us. Thanks are also due to him and other members of the Hydrogen Bond Project in Uppsala for many valuable discussions of this work. We are also indebted to H. Karlsson for his skilled technical assistance. This work was in part supported by grants from the Swedish Natural Science Research Council which are here gratefully acknowledged.

References

Albertsson, J. \& Grenthe, I. (1973). Acta Cryst. B29, 2751-2760.

Almlöf, J., Kvick, Å. \& Thomas, J. O. (1973). J. Chem. Phys. 59, 3901-3906.
Arndt, U. W. \& Willis, B. T. M. (1966). Single Crystal Diffractometry. Cambridge Univ. Press.
Bacon, G. E. (1972). Acta Cryst. A 28, 357-358.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Kollman, P. A. \& Allen, L. C. (1970). J. Amer. Chem. Soc. 92, 6101-6107.
Kraemer, W. P. \& Diercksen, G. H. F. (1970). Chem. Phys. Lett. 5, 463-465.
Kvick, Å., Koetzle, T. F., Thomas, R. \& Takusagawa, F. (1974). J. Chem. Phys. In the press.

Lundgren, J. O. (1972). Acta Cryst. B28, 1684-1691.
Lundgren, J. O. (1974). Crystallographic Computer Programs. UUIC-B13-4-01. Institute of Chemistry, Univ. of Uppsala, Sweden.
Newton, M. D. \& Ehrenson, S. (1971). J. Amer. Chem. Soc. 93, 4971-4990.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Tellgren, R., Ramanujam, P. S. \& Liminga, R. (1973). Ferroelectrics. In the press.

Acta Cryst. (1974). B30, 1947

Conformation of Non-Aromatic Ring Compounds. LXXXVI. The Crystal and Molecular Structure of 4-Phenyl-2,4,6-triazatricyclo[5,2,2,0 $\left.{ }^{2,6}\right]$ undecane-3,5-dione at $-170{ }^{\circ} \mathrm{C}$

By C. van der Ende, B. Offereins and C. Romers
Gorlaeus Laboratoria, X-ray and Electron-Diffraction Section, Rijksuniversiteit, Leiden, The Netherlands

(Received 13 February 1974; accepted 15 April 1974)

Abstract

The camphane-like compound 4-phenyl-2,4,6-triazatricyclo[5,2,2,02,6]undecane-3,5-dione crystallizes in the monoclinic system with $a=5.8399$ (6), $b=15 \cdot 6402$ (16), $c=6.7462$ (7) $\AA, \beta=100 \cdot 74(5)^{\circ}$ at $-170^{\circ} \mathrm{C}$, space group $P 2_{1}$ and $Z=2.1756$ significant reflexions were collected on a three-circle diffractometer at $-170^{\circ} \mathrm{C}$ with Mo $K \alpha$ radiation. The structure was solved by direct methods. Block-diagonal refinement including all atoms reduced the R index to $3 \cdot 54 \%$. The bicyclo[2,2,2]octane ring is slightly distorted. In this ring system the hybridization of the two vicinal atoms $\mathrm{N}(2)$ and $\mathrm{N}(6)$ is pyramidal, while that of the third nitrogen atom, $\mathrm{N}(4)$, is planar. The $1,2,4$-triazacyclopentane-2,4-dione ring is slightly puckered: its largest torsion angle is $-8 \cdot 5^{\circ}$ and its conformation an envelope with $\mathrm{N}(4)$ as flap. The phenyl ring has an asymmetric orientation with respect to the five-membered ring.

Introduction

This study is a continuation of earlier investigations (Altona \& Sundaralingam, 1970; Altona \& Sundaralingam, 1972; Offereins, Altona \& Romers, 1973) into the twist of norbornane- and camphane-like structures containing nitrogen atoms in pyramidal hybridization. The title compound (hereinafter PTT) contains a bicyclo[2,2,2]octane nucleus in which two vicinal secondary carbon atoms are substituted by nitrogen atoms. Its chemical structure and the numbering of atoms are indicated in Fig. 1.

Evidence of a twisting motion about the threefold symmetry axis of bicyclo[2,2,2]octane has been reported by Ermer \& Dunitz (1969) for the solid-state structure of bicyclo[2,2,2]octane-1,4-dicarboxylic acid (BOD) and by Yokozeki, Kuchitsu \& Morino (1970) for the gasphase structure of bicyclo[2,2,2]octane. This motion does not lead to a deviation from $D_{3 h}$ symmetry for the average structures observed; however, the lower D_{3} symmetry has been reported by Cameron, Ferguson \& Morris (1968) for the solid-state molecular structure of $\quad 1$ - p-bromobenzenesulphonyloxymethylbicyclo[2,2,2]octane (BBO). Apart from the two aza atoms,
$\mathrm{N}(2)$ and $\mathrm{N}(6)$, PTT contains a third nitrogen atom $\mathrm{N}(4)$. The latter, which in pyramidal hybridization might induce asymmetric distortion, was found to occur in planar hybridization.

Experimental

The title compound has not been described before, It was synthesized (Hameeteman, de Man \& Altona, 1972) from a known precursor, the 8,9 -unsaturated compound (Gillis \& Hagarty, 1967), via a hydrogenation procedure as decribed by Askani (1965). The compound was recrystallized from methanol in the form of transparent irregular blocks. A specimen with dimensions $0.26 \times 0.28 \times 0.51 \mathrm{~mm}$ was selected and mounted along its longest edge on a goniometer head. This direction turned out to be the longest axis (the monoclinic b axis) of the unit cell. The lattice constants (Table 1) at $20^{\circ} \mathrm{C}$ and at $-170^{\circ} \mathrm{C}$ were measured manually with a three-circle diffractometer. The observed extinctions $0 k 0$ for k odd indicate the space groups $P 2_{1}$ or $P 2_{1} / m$.

Table 1. Crystal data of PTT

4-Phenyl-2,4,6-triazatricyclo[5,2,2,0 ${ }^{2,6}$]undecane-3,5-dione $\mathrm{C}_{14} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{H}_{15}$, melting point $211^{\circ} \mathrm{C}$, density $d_{\text {obs }}^{20}=1.356 \mathrm{~g} \mathrm{~cm}^{-3}$ $d_{x}^{20}=1.362 \mathrm{~g} \mathrm{~cm}^{-3}$, space group $P 2_{1}, Z=2$ molecules per unit cell, $\mu(\mathrm{Mo} K \alpha)=1.05 \mathrm{~cm}^{-1}, F(000)=272$

	$20^{\circ} \mathrm{C}$	$-170^{\circ} \mathrm{C}$
a	$5.9770(6) \AA$	$5 \cdot 8399(6) \AA$
b	$15.7468(16)$	$15.6402(16)$
c	$6.7302(7)$	$6.7462(7)$
β	$100.71(5)^{\circ}$	$100.74(5)^{\circ}$

The reflexion intensities at $-170^{\circ} \mathrm{C}$ were recorded during eight consecutive days with a three-circle diffractometer using graphite-monochromatized Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$). The cooling system adopted has been described by van Bolhuis (1971). The $\theta-2 \theta$ scan was employed and the scan width varied from 0.9° at $\theta_{\text {min }}=4^{\circ}$ to 1.4° at $\theta_{\text {max }}=30^{\circ}$. After each series of 19 reflexions one of three reference reflexions ($\overline{121}$, 111 or $\overline{171)}$ was recorded to monitor instrumental fluctuations and crystal stability.

1817 symmetry-independent reflexions were scanned. Of these, 1756 having counts larger than twice the background count were accounted as observed during the refinement. The non-observed reflexions were also taken into consideration for the calculation of normalized structure factors (see below). The intensities were corrected for the decrease in scattering power of the crystal by means of a fifth-order polynomial function of the exposure time. In view of the crystal size and the relatively small linear absorption coefficient the transmission was estimated to vary between 97 and 99%. Hence the correction for absorption was omitted. Finally the reflexions were reduced to structure factors, each being assigned an estimated standard deviation σ_{F}. A preliminary scale and overall isotropic
temperature factor ($B=0.13 \AA^{2}$) were obtained by means of a Wilson plot.

Solution of the structure

The chemical structure (Fig. 1) a priori does not exclude a mirror plane bisecting the lines $\mathrm{C}(8)-\mathrm{C}(9)$, $\mathrm{C}(10)-\mathrm{C}(11), \mathrm{N}(2)-\mathrm{N}(6)$ and coinciding with atoms $\mathrm{N}(4)$ $\mathrm{C}(12)$ and $\mathrm{C}(15)$. However, such a molecule with symmetry C_{s} cannot be accommodated in the unit cell with symmetry $P 2_{1} / m$, since its largest dimension ($\sim 11.8 \AA$) would be perpendicular to [010] and would exceed the longest repeat unit in the plane (010). The non-centrosymmetric space group $P 2_{1}$ must therefore be accepted as correct.

The phases of the structure factors were determined by the multisolution method (Germain, Main \& Woolfson, 1971), with a program designed by Motherwell \& Isaacs (1971). The structure factors were converted into their normalized form E. To fulfil the statistical demands for $\langle | E\left\rangle\right.$ and $\left.\left.\langle | E^{2}-1\right|\right\rangle$ listed in Table 2, the scale and isotropic temperature factors were modified using the information of all scanned reciprocallattice points.

Table 2. Direct-methods data of PTT

See Kennard et al. (1972) and Drew et al. (1969) for the meaning of $R_{\text {Karle }}, \alpha_{\text {Karle }}$, and $t ; \alpha^{\prime}=\alpha_{\text {Karle }} \sigma^{3 / 2}\left(2 \sigma_{3}\right)^{-1}$.

The ideal situation for the fixation of the origin of a unit cell with space group $P 2_{1}$ is the assignment of three zero phases to a general reflexion $h 1 l$ and two

Fig. 1. Structural diagram and numbering of the molecule PTT.
reflexions $h 0 l$ in parity groups $h+k$ even and $h+k$ odd. The additional requirements (large E values and several \sum_{2} relations between them) could not, however, be met in our case. Similar difficulties were experienced during the structure determination of $5 \alpha, 17 \alpha$-pregnane$3 \beta, 20 \alpha$-diol (Romers, de Graaff, Hoogenboom \& Rutten, 1974) crystallizing in the same space group. It was necessary to choose one special reflexion $20 \overline{1}$ and two general reflexions $1,10, \overline{5}$ and $41 \overline{4}$ (see Table 2). The assigned phases 0,0 and $0<\varphi(414)<\pi / 2$ simultaneously fix both the enantiomorph and the origin on a screw axis. The trial value $\varphi(41 \overline{4})=\pi / 4$ ensures for a maximum phase error of $\pi / 4$. To a fourth reflexion, $2,12,4$, were given the trial phase values $\pi / 4$, $3 \pi / 4,5 \pi / 4$ and $7 \pi / 4$.

Apart from the average absolute value $\langle | \varphi\rangle(\pi / 2$ in the ideal case) solution 4 is better on all counts. This solution (Table 2) has the lowest $R_{\text {Karle }}$ (Karle \& Karle, 1966), the highest values for α^{\prime} and t (Drew, Templeton \& Zalkin, 1969) and uses the largest number of Σ_{2} relations. The corresponding E map contained all heavy

Table 3. Observed $\left(F_{o}\right)$ and calculated $\left(F_{c}\right)$ structure factors ($10 \times$ absolute values) (the phases are not listed)

atoms plus a number of lower peaks belonging to a mirror image, which is related to the selected enantiomorph by an inversion operation. In view of the stated requirements the role of reflexions $1,10,5$ and $41 \overline{4}$ should have been reversed. It is remarkable that this defect in strategy did not hamper the analysis. Of course, the error was discovered after completion of the procedure.

Refinement

The minimization of least-squares residuals, isotropic during the initial cycles, anisotropic and including hydrogen positions during the consecutive steps, was a matter of routine. The scattering factors for carbon, nitrogen and oxygen were taken from International Tables for X-ray Crystallography (1962), those for hydrogen from Stewart, Davidson \& Simpson (1965). The function minimized was $\sum\left(w\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with $w=1$ during the isotropic stages and $w=\sigma_{F}^{-2}$ during the anisotropic refinement. In the final two cycles (cycles 10 and 11) the molecule was divided into two blocks, which were refined separately. The conventional and weighted R indices, $R=\sum\left|F_{o}-F_{c}\right| / \sum\left|F_{o}\right|$ and $R_{w}=\left\{\sum w\left(F_{o}-F_{c}\right)^{2} / \sum w F_{o}^{2}\right\}^{1 / 2}$, dropped to 3.54 and $4 \cdot 48 \%$ respectively.
The structure factors are listed in Table 3, the positional coordinates in Tables 4 and 5, and the vibrational parameters in Table 6. The respective average standard deviations, σ, for bond lengths $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{N}$, $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ resulting from machine-computed e.s.d.'s in positional parameters are $0.0021,0.0022,0.0023$ and $0.026 \AA$. Assuming chemical equivalence of $\mathrm{C}-\mathrm{C}$ bonds in the benzene ring and of all $\mathrm{C}-\mathrm{H}$ bonds we arrive at a conservative estimate of 0.0039 and $0.046 \AA$ for standard errors in $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bond lengths. More realistic estimates of standard deviations are therefore

Table 4. Fractional coordinates (10^{4} units) of non-hydrogen atoms
Estimated standard deviations in the least significant digit are given in parentheses.

	x	y	z
$\mathrm{C}(1)$	$-1036(3)$	$1070(1)$	$-263(3)$
$\mathrm{N}(2)$	$329(2)$	$1847(1)$	$345(3)$
$\mathrm{C}(3)$	$1502(3)$	$2100(1)$	$2182(3)$
$\mathrm{N}(4)$	$1500(2)$	$2996(1)$	$2079(2)$
$\mathrm{C}(5)$	$92(3)$	$3290(1)$	$297(3)$
$\mathrm{N}(6)$	$-504(2)$	$2571(1)$	$-833(2)$
$\mathrm{C}(7)$	$-2649(3)$	$2395(1)$	$-2304(3)$
$\mathrm{C}(8)$	$-4492(3)$	$2052(1)$	$-1169(3)$
$\mathrm{C}(9)$	$-3562(3)$	$1227(1)$	$-10(3)$
$\mathrm{C}(10)$	$-935(3)$	$933(1)$	$-2495(3)$
$\mathrm{C}(11)$	$-2042(3)$	$1710(1)$	$-3739(3)$
$\mathrm{O}(3)$	$2420(2)$	$1659(1)$	$3595(2)$
$\mathrm{O}(5)$	$-421(2)$	$4028(1)$	$-156(2)$
$\mathrm{C}(12)$	$2839(3)$	$3553(1)$	$3537(3)$
$\mathrm{C}(13)$	$4839(3)$	$3936(1)$	$3092(3)$
$\mathrm{C}(14)$	$6093(3)$	$4502(1)$	$4476(3)$
$\mathrm{C}(15)$	$5366(3)$	$4679(1)$	$6275(3)$
$\mathrm{C}(16)$	$3375(3)$	$4293(1)$	$6712(3)$
$\mathrm{C}(17)$	$2095(3)$	$3725(1)$	$5335(3)$

the values $0.0029,0.0031,0.0033$ and $0.037 \AA$ for $\mathrm{C}-\mathrm{O}$, $\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bond lengths respectively. The corresponding standard deviations in valency and torsion angles involving the heavy atoms are 0.2 and 0.3°, respectively.

Discussion of the structure

The bond lengths and valency angles are depicted in Fig. 2(a) and (b). The difference between the smallest

Table 5. Fractional coordinates (10^{3} units) and isotropic B values ($10 \AA^{2}$ units) of hydrogen atoms

Estimated standard deviations in the least significant digit are given in parentheses.

	x	y	z	B
H(11)	-33 (5)	63 (2)	74 (4)	19 (5)
H(71)	-319 (4)	290 (2)	-295 (4)	(4)
H(111)	-478(5)	246 (2)	-21 (5)	22 (5)
H(112)	-595 (5)	195 (2)	-230 (5)	20 (5)
H(101)	-453 (5)	75 (2)	-51 (5)	24 (5)
H(102)	-361 (4)	122 (2)	150 (4)	16 (4)
$\mathrm{H}(91)$	-174 (6)	44 (2)	-293(5)	26 (5)
H(92)	78 (4)	87 (2)	-265 (4)	16 (4)
H(81)	-337(5)	155 (2)	-467 (4)	13 (4)
H(82)	-95 (5)	202 (2)	-455 (5)	25 (5)
H(131)	543 (6)	379 (2)	183 (5)	28 (6)
$\mathrm{H}(141)$	746 (5)	474 (2)	416 (4)	21 (5)
H(151)	619 (4)	505 (2)	718 (4)	16 (4)
H(161)	274 (5)	440 (2)	788 (5)	22 (5)
H(171)	71 (4)	343 (1)	561 (3)	5 (3)

Table 6. Thermal parameters $U_{i j}\left(10^{3} \AA^{2}\right.$ units) of nonhydrogen atoms
Estimated standard deviations in the least significant digit are given in parentheses. The temperature factor is defined by

	U_{11}	U_{22}	U_{33}	$2 U_{12}$	$2 U_{23}$	$2 U_{13}$
	$16(1)$	$7(1)$	$20(1)$	$-2(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(1)$	$16(1)$	$4(1)$	$18(1)$	$1(1)$	$2(1)$	$-1(1)$
$\mathrm{N}(2)$	$16(1)$	$0(1)$	$6(1)$	$18(1)$	$0(1)$	$-4(1)$
$\mathrm{C}(3)$	$13(1)$					
$\mathrm{N}(4)$	$16(1)$	$5(1)$	$14(1)$	$-1(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(5)$	$15(1)$	$8(1)$	$14(1)$	$-3(1)$	$0(1)$	$0(1)$
$\mathrm{N}(6)$	$18(1)$	$5(1)$	$15(1)$	$-2(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(7)$	$14(1)$	$10(1)$	$14(1)$	$-2(1)$	$0(1)$	$0(1)$
$\mathrm{C}(8)$	$15(1)$	$14(1)$	$26(1)$	$5(1)$	$2(1)$	$18(1)$
$\mathrm{C}(9)$	$17(1)$	$15(1)$	$20(1)$	$-6(1)$	$2(1)$	$9(1)$
$\mathrm{C}(10)$	$17(1)$	$13(1)$	$23(1)$	$1(1)$	$-15(1)$	$5(1)$
$\mathrm{C}(1)$	$20(1)$	$16(1)$	$15(1)$	$-6(1)$	$-7(1)$	$7(1)$
$\mathrm{O}(3)$	$19(1)$	$9(1)$	$20(1)$	$4(1)$	$3(1)$	$-4(1)$
$\mathrm{O}(5)$	$25(1)$	$6(1)$	$22(1)$	$-2(1)$	$6(1)$	$-6(1)$
$\mathrm{C}(12)$	$14(1)$	$7(1)$	$15(1)$	$-1(1)$	$0(1)$	$1(1)$
$\mathrm{C}(13)$	$16(1)$	$12(1)$	$19(1)$	$0(1)$	$1(1)$	$8(1)$
$\mathrm{C}(14)$	$15(1)$	$11(1)$	$27(1)$	$-4(1)$	$6(1)$	$0(1)$
$\mathrm{C}(15)$	$22(1)$	$7(1)$	$23(1)$	$0(1)$	$0(1)$	$-9(1)$
$\mathrm{C}(16)$	$23(1)$	$12(1)$	$15(1)$	$3(1)$	$-3(1)$	$2(1)$
$\mathrm{C}(17)$	$15(1)$	$10(1)$	$17(1)$	$-1(1)$	$0(1)$	$6(1)$

and largest $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$ distance is $0.025(5) \AA$. Such variation is quite common and needs no comment. The C-H bond lengths, varying between 0.90 and 1.04 \AA, are listed in Table 7. The sums of valency angles involving the nitrogen atoms $\mathrm{N}(2), \mathrm{N}(6)$ and $\mathrm{N}(4)$ amount to $353 \cdot 7,350 \cdot 3$ and $359 \cdot 9^{\circ}$ respectively. The first two sums, significantly deviating from 360° by amounts of 6.3 and 9.7°, point to a pyramidal configuration of $N(2)$ and $N(6)$, while $N(4)$ clearly shows a planar hybridization of its bonds.

Fig. 2. (a) Bond lengths (\AA), (b) valency angles, (c) indication of rings and least-squares planes.

(d)

Fig. 3. Newman projections along (a) $\mathrm{C}(10)-\mathrm{C}(11),(b) \mathrm{C}(9)-$ $\mathrm{C}(8),(c) \mathrm{C}(1) \cdots \mathrm{C}(7)$, (d) $\mathrm{N}(2)-\mathrm{N}(6)$ and $(e) \mathrm{N}(4)-\mathrm{C}(12)$.

Table 7. Intramolecular C-H bond lengths (\AA) of PTT

$\mathrm{C}(1)-\mathrm{H}(11)$	1.00	$\mathrm{C}(9)-\mathrm{H}(92)$	1.03	$\mathrm{C}(13)-\mathrm{H}(131)$	1.00
$\mathrm{C}(7)-\mathrm{H}(71)$	0.93	$\mathrm{C}(10)-\mathrm{H}(101)$	0.96	$\mathrm{C}(14)-\mathrm{H}(141)$	0.94
$\mathrm{C}(8)-\mathrm{H}(81)$	0.94	$\mathrm{C}(10)-\mathrm{H}(102)$	1.02	$\mathrm{C}(15)-\mathrm{H}(151)$	0.90
$\mathrm{C}(8)-\mathrm{H}(82)$	1.04	$\mathrm{C}(11)-\mathrm{H}(111)$	0.94	$\mathrm{C}(16)-\mathrm{H}(161)$	0.94
$\mathrm{C}(9)-\mathrm{H}(91)$	0.92	$\mathrm{C}(11)-\mathrm{H}(112)$	1.04	$\mathrm{C}(17)-\mathrm{H}(171)$	0.98

Although the average twist about the axis $\mathrm{C}(1) \cdots$ $\mathrm{C}(7)\left[2 \cdot 7^{\circ}\right.$, see Fig. 3(c)] is about the same as that reported by Cameron et al. (1968) for BOO (3°) and is also in reasonable agreement with an average twist motion of about 7° for BOD and unsubstituted bicyclo[2,2,2]octane, the bicyclo[2,2,2]-like moiety of PTT has no D_{3} or C_{3} symmetry. Neither is there found an indication for a twisting about the $\mathrm{C}(1) \cdots \mathrm{C}(7)$ axis, the largest principal axes of thermal ellipsoids of atoms $\mathrm{N}(2), \mathrm{N}(6), \mathrm{C}(8), \mathrm{C}(9), \mathrm{C}(10)$ and $\mathrm{C}(11)$ deviating by 10 , $15,69,50,48$ and 62° respectively from the direction $C(1) \cdots C(7)$. We have also inspected the thermal motion of the whole molecule in terms of rigid-body movement (Schomaker \& Trueblood, 1968). The agreement between calculated and observed matrix elements $U_{i j}$ is, however, rather poor. Low-temperature diffraction data are not very well suited to inspection of thermal vibrations and we realize that the outcome of our thermal analysis is inconclusive with respect to a twist as well as rigid-body motion.

Except torsion angle $\mathbf{H}(102)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(112)$ [see Fig. 3(a), (b) and (c)] which has an opposite sign, the distortions about $\mathrm{C}(10)-\mathrm{C}(11), \mathrm{C}(9)-\mathrm{C}(8)$ and $\mathrm{C}(1) \cdots \mathrm{C}(7)$ are consistent. In view of the relatively large uncertainty in the positions of the hydrogen atoms the deviation of the exceptional dihedral angle is not disturbing.

Fig. 4. ORTEP projection of PTT. The thermal ellipsoids of the non-hydrogen atoms are scaled to enclose 75% probability.

Fig. 3(d) again demonstrates the pyramidal hybridization of N(2) and N(6). Finally Fig. 3(e) shows that the benzene ring is neither perpendicular nor parallel to the average plane of ring D. The overall molecular shape which lacks any symmetry is depicted in Fig. 4.

The endocyclic torsion angles of rings A, B, C and D together with a number of dihedral angles between the least-squares planes $A^{\prime}, B^{\prime}, D^{\prime}$ and F^{\prime} are listed in Table 8. The conformations of rings A, B and C are, of course, slightly distorted tub-boats, while ring D is a nearly ideal envelope with $\mathrm{N}(4)$ as flap.

Packing

A part of the packing is illustrated (Fig. 5) in a projection along [100]. The molecules are inclined towards [010] by an angle of approximately 45°, resulting in a herringbone type of packing.

There are 66 contacts of the types $\mathrm{H} \cdots \mathrm{H}, \mathrm{O} \cdots \mathrm{H}$, $\mathrm{N} \cdots \mathrm{H}$ and $\mathrm{C} \cdots \mathrm{H}$ smaller than $3.0 \AA$, and molecule (I) at position x, y, z is surrounded by 14 neighbouring molecules. The shortest contact ($2 \cdot 36 \AA$, Table 9) is of the type $\mathrm{H} \cdots \mathrm{H}$; the shortest $\mathrm{O} \cdots \mathrm{H}$ interaction involving the screw-axis operation between molecules (I) and (VIII) amounts to $2.58 \AA$. The tight packing and the large coordination number are in agreement with the fairly high density $\left(1.36 \mathrm{~g} \mathrm{~cm}^{-3}\right)$.

All calculations were performed on a $360 / 65$ computer of the University of Leiden. The authors are indebted to Dr G.C. Verschoor for experimental assistance and to Mrs E.W.M. Rutten for computational aid.

References

Altona, C. \& Sundaralingam, M. (1970). J. Amer. Chem. Soc. 92, 1995-1999.
Altona, C. \& Sundaralingam, M. (1972). Acta Cryst. B28, 1806-1816.

Table 8. Endocyclic torsion angles and additional dihedral angles between least-squares planes $A^{\prime}(1,10,11,7)$, $B^{\prime}\left(1, \mathrm{~N}_{2}, \mathrm{~N}_{6}, 7\right), C^{\prime}(1,9,8,7), D^{\prime}\left(\right.$ five-membered ring) and F^{\prime} (benzene ring)

Ring A	
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{N}(6)$	57.6°
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{N}(6)-\mathrm{C}(7)$	$4 \cdot 2$
$\mathrm{N}(2)-\mathrm{N}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-62.0
$\mathrm{N}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	54.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	5.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{N}(2)$	-61.0
Ring B	
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{N}(6)$	$-60 \cdot 6$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{N}(6)-\mathrm{C}(7)$	4.2
$\mathrm{N}(2)-\mathrm{N}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	$56 \cdot 3$
$\mathrm{N}(6)-\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(10)$	-58.9
$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(1)$	$4 \cdot 2$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{N}(2)$	$53 \cdot 6$
Dihedral angles	
A^{\prime} / B^{\prime}	$120.6{ }^{\circ}$
A^{\prime} / C^{\prime}	$121 \cdot 1$
B^{\prime} / C^{\prime}	118.3

Ring C	
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$-61 \cdot 9^{\circ}$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(7)$	$4 \cdot 2$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{C}(8)$	$57 \cdot 6$
$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-63 \cdot 5$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	$5 \cdot 5$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(10)$	$56 \cdot 1$
$\mathrm{Ring} D$	
$\mathrm{~N}(6)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	$-3 \cdot 4$
$\mathrm{~N}(2)-\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$7 \cdot 4$
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{N}(6)$	$-8 \cdot 5$
$\mathrm{~N}(4)-\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{N}(2)$	$6 \cdot 1$
$\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{N}(2)-\mathrm{C}(3)$	$-1 \cdot 8$

Table 9. Intermolecular contacts (\AA) between molecule (I) (x, y, z) and neighbouring molecules at positions indicated

Molecule	Position		Interaction	Number	Average	Minimum
(II)	x,x,	$y, \quad 1+z$	$\mathrm{H} \cdot \cdots \mathrm{H}$	4	$2 \cdot 69$	$2 \cdot 40$
(III)		$y,-1+z$	$\mathrm{O} \cdots \mathrm{H}$	2	$2 \cdot 56$	$2 \cdot 53$
			C. $\cdot \mathrm{H}$	1	$3 \cdot 00$	$3 \cdot 00$
			$\mathrm{N} \cdot \cdot \mathrm{H}$	1	$2 \cdot 95$	$2 \cdot 95$
(IV)	$1+x$,	y, z	$\mathrm{H} \cdot \cdots \mathrm{H}$	4	2.68	$2 \cdot 52$
(V)	$-1+x$,	y,	$\mathrm{O} \cdots \mathrm{H}$	2	$2 \cdot 86$	$2 \cdot 73$
			C...H	1	2.99	$2 \cdot 99$
(VI)	$1+x$,	$y, \quad 1+z$	$\mathrm{O} \cdots \mathrm{H}$	3	$2 \cdot 74$	$2 \cdot 52$
(VII)	$-1+x$,	$y,-1+z$	C $\cdots \mathrm{H}$	3	$2 \cdot 90$	$2 \cdot 85$
(VIII)	$-x$	1 $+y, \quad-z$	$\mathrm{O} \cdots \mathrm{H}$	1	$2 \cdot 58$	2.58
(IX)	$-x$,	+,$\quad-z$	$\mathrm{C} \cdot \cdots \mathrm{H}$	2	$2 \cdot 96$	$2 \cdot 95$
(X)	$-x$,	$\frac{1}{2}+y, \quad 1-z$	$\mathrm{H} \cdot \cdots \mathrm{H}$	5	$2 \cdot 77$	$2 \cdot 64$
(XI)		2 $+1, \quad 1-z$				
(XI)	$1-x$,	$\frac{1}{2}+y, \quad 1-z$	$\mathrm{O} \cdots \mathrm{H}$	1	2.73	2.73
(XIII)	$1-x$,	迷 $+1-z$	$\mathrm{H} \cdot \cdots \mathrm{H}$	1	$2 \cdot 72$	2.72
(XIV)	$1-x$,	$\frac{1}{2}+y, \quad z$	H $\cdot \cdots \mathrm{H}$	2	$2 \cdot 67$	$2 \cdot 36$
(XV)	$1-x$,	$\frac{1}{2}+y, \quad-z$				

Fig. 5. The packing of PTT molecules in a projection along [100]. The Roman numerals are explained in Table 8.

Askani, R. (1965). Chem. Ber. 98, 2551-2555.
Bolhuis, F. van (1971). J. Appl. Cryst. 4, 263.
Cameron, A. F., Ferguson, G. \& Morris, D. G. (1968). Chem. Commun. p. 316.
Drew, M. G. B., Templeton, D. \& Zalkin, A. (1969). Acta Cryst. B25, 261-267.
Ermer, O. \& Dunitz, J. D. (1969). Helv. Chim. Acta, 52, 1861-1886.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
Gillis, B. T. \& Hagarty, J. D. (1967). J. Org. Chem. 32, 330-333.
Hameeteman, W., de Man, J. D. \& Altona, C. (1972). Unpublished.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.

Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859
Kennard, O., Isaacs, N. W., Motherwell, W. D. S., Coppola, J. C., Wampler, D. L., Larson, A. C. \& Watson, D. G. (1971). Proc. Roy. Soc. A 325, 401-436.
Motherwell, W. D. S. \& Isaars, N. W. (1971). Acta Cryst. A27, 681-682.
Offereins, B., Altona, C. \& Romers, C. (1973). Acta Cryst. B 29, 2098-2103.
Romers, C., de Graaff, R. A. G., Hoogenboom, F. J. M. \& Rutten, E. W. M. (1974). Acta Cryst. B30, 1063-1071.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Yokozeki, A., Kuchitsu, K. \& Morino, Y. (1970). Bull. Chem. Soc. Japan, 43, 2017-2026.

