In the sulphonate group electron densities are found in all S–O bonds and negative regions occur between the bonds. Negative regions are also observed at all oxygen sites, in agreement with earlier studies (cf. Almlöf, Kvick & Thomas, 1973). Electron densities corresponding to the lone pairs are observed around all oxygen atoms, but the densities are in most cases smeared so that no lone-pair directions can be deduced from the maps.

We wish to express our gratitude to Professor I. Olovsson for the facilities made available to us. Thanks are also due to him and other members of the Hydrogen Bond Project in Uppsala for many valuable discussions of this work. We are also indebted to H. Karlsson for his skilled technical assistance. This work was in part supported by grants from the Swedish Natural Science Research Council which are here gratefully acknowledged.

References

ALBERTSSON, J. & GRENTHE, I. (1973). Acta Cryst. B29, 2751–2760.

- ALMLÖF, J., KVICK, Å. & THOMAS, J. O. (1973). J. Chem. Phys. 59, 3901–3906.
- ARNDT, U. W. & WILLIS, B. T. M. (1966). Single Crystal Diffractometry. Cambridge Univ. Press.
- BACON, G. E. (1972). Acta Cryst. A28, 357-358.
- COPPENS, P. & HAMILTON, W. C. (1970). Acta Cryst. A 26, 71–83.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- KOLLMAN, P. A. & ALLEN, L. C. (1970). J. Amer. Chem. Soc. 92, 6101–6107.
- KRAEMER, W. P. & DIERCKSEN, G. H. F. (1970). Chem. Phys. Lett. 5, 463–465.
- KVICK, Å., KOETZLE, T. F., THOMAS, R. & TAKUSAGAWA, F. (1974). J. Chem. Phys. In the press.
- LUNDGREN, J. O. (1972). Acta Cryst. B28, 1684-1691.
- LUNDGREN, J. O. (1974). Crystallographic Computer Programs. UUIC-B13-4-01. Institute of Chemistry, Univ. of Uppsala, Sweden.
- NEWTON, M. D. & EHRENSON, S. (1971). J. Amer. Chem. Soc. 93, 4971–4990.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- TELLGREN, R., RAMANUJAM, P. S. & LIMINGA, R. (1973). *Ferroelectrics*. In the press.

Acta Cryst. (1974). B30, 1947

Conformation of Non-Aromatic Ring Compounds. LXXXVI. The Crystal and Molecular Structure of 4-Phenyl-2,4,6-triazatricyclo[5,2,2,0^{2,6}]undecane-3,5-dione at -170°C

BY C. VAN DER ENDE, B. OFFEREINS AND C. ROMERS

Gorlaeus Laboratoria, X-ray and Electron-Diffraction Section, Rijksuniversiteit, Leiden, The Netherlands

(Received 13 February 1974; accepted 15 April 1974)

The camphane-like compound 4-phenyl-2,4,6-triazatricyclo[5,2,2,0^{2,6}]undecane-3,5-dione crystallizes in the monoclinic system with a = 5.8399 (6), b = 15.6402 (16), c = 6.7462 (7) Å, $\beta = 100.74$ (5)° at -170°C, space group $P2_1$ and Z=2. 1756 significant reflexions were collected on a three-circle diffractometer at -170°C with Mo K α radiation. The structure was solved by direct methods. Block-diagonal refinement including all atoms reduced the R index to 3.54%. The bicyclo[2,2,2]octane ring is slightly distorted. In this ring system the hybridization of the two vicinal atoms N(2) and N(6) is pyramidal, while that of the third nitrogen atom, N(4), is planar. The 1,2,4-triazacyclopentane-2,4-dione ring is slightly puckered: its largest torsion angle is -8.5° and its conformation an envelope with N(4) as flap. The phenyl ring has an asymmetric orientation with respect to the five-membered ring.

Introduction

This study is a continuation of earlier investigations (Altona & Sundaralingam, 1970; Altona & Sundaralingam, 1972; Offereins, Altona & Romers, 1973) into the twist of norbornane- and camphane-like structures containing nitrogen atoms in pyramidal hybridization. The title compound (hereinafter PTT) contains a bicyclo[2,2,2]octane nucleus in which two vicinal secondary carbon atoms are substituted by nitrogen atoms. Its chemical structure and the numbering of atoms are indicated in Fig. 1.

Evidence of a twisting motion about the threefold symmetry axis of bicyclo[2,2,2]octane has been reported by Ermer & Dunitz (1969) for the solid-state structure of bicyclo[2,2,2]octane-1,4-dicarboxylic acid (BOD) and by Yokozeki, Kuchitsu & Morino (1970) for the gasphase structure of bicyclo[2,2,2]octane. This motion does not lead to a deviation from D_{3h} symmetry for the average structures observed; however, the lower D_3 symmetry has been reported by Cameron, Ferguson & Morris (1968) for the solid-state molecular structure of 1-p-bromobenzenesulphonyloxymethylbicyclo-[2,2,2]octane (BBO). Apart from the two aza atoms, N(2) and N(6), PTT contains a third nitrogen atom N(4). The latter, which in pyramidal hybridization might induce asymmetric distortion, was found to occur in planar hybridization.

Experimental

The title compound has not been described before, It was synthesized (Hameeteman, de Man & Altona, 1972) from a known precursor, the 8,9-unsaturated compound (Gillis & Hagarty, 1967), *via* a hydrogenation procedure as decribed by Askani (1965). The compound was recrystallized from methanol in the form of transparent irregular blocks. A specimen with dimensions $0.26 \times 0.28 \times 0.51$ mm was selected and mounted along its longest edge on a goniometer head. This direction turned out to be the longest axis (the monoclinic *b* axis) of the unit cell. The lattice constants (Table 1) at 20°C and at -170°C were measured manually with a three-circle diffractometer. The observed extinctions 0k0 for *k* odd indicate the space groups $P2_1$ or $P2_1/m$.

Table 1. Crystal data of PTT

4-Phenyl-2,4,6-triazatricyclo[5,2,2,0^{2,6}]undecane-3,5-dione $C_{14}O_2N_3H_{15}$, melting point 211 °C, density $d_{0bs}^{20} = 1.356$ g cm⁻³ $d_x^{20} = 1.362$ g cm⁻³, space group $P2_1$, Z = 2 molecules per unit cell, μ (Mo K α) = 1.05 cm⁻¹, F(000) = 272

	20°C	-170°C
а	5·9770 (6) Å	5·8399 (6) Å
b	15.7468 (16)	15.6402 (16)
с	6.7302 (7)	6.7462 (7)
ß	100.71 (5)°	100·74 (5)°

The reflexion intensities at -170 °C were recorded during eight consecutive days with a three-circle diffractometer using graphite-monochromatized Mo K α radiation ($\lambda = 0.71069$ Å). The cooling system adopted has been described by van Bolhuis (1971). The θ -2 θ scan was employed and the scan width varied from 0.9° at $\theta_{min} = 4^{\circ}$ to 1.4° at $\theta_{max} = 30^{\circ}$. After each series of 19 reflexions one of three reference reflexions ($\overline{121}$, $1\overline{11}$ or $\overline{171}$) was recorded to monitor instrumental fluctuations and crystal stability.

1817 symmetry-independent reflexions were scanned. Of these, 1756 having counts larger than twice the background count were accounted as observed during the refinement. The non-observed reflexions were also taken into consideration for the calculation of normalized structure factors (see below). The intensities were corrected for the decrease in scattering power of the crystal by means of a fifth-order polynomial function of the exposure time. In view of the crystal size and the relatively small linear absorption coefficient the transmission was estimated to vary between 97 and 99%. Hence the correction for absorption was omitted. Finally the reflexions were reduced to structure factors, each being assigned an estimated standard deviation σ_F . A preliminary scale and overall isotropic temperature factor $(B=0.13 \text{ Å}^2)$ were obtained by means of a Wilson plot.

Solution of the structure

The chemical structure (Fig. 1) a priori does not exclude a mirror plane bisecting the lines C(8)-C(9), C(10)-C(11), N(2)-N(6) and coinciding with atoms N(4) C(12) and C(15). However, such a molecule with symmetry C_s cannot be accommodated in the unit cell with symmetry $P2_1/m$, since its largest dimension (~11.8 Å) would be perpendicular to [010] and would exceed the longest repeat unit in the plane (010). The non-centrosymmetric space group $P2_1$ must therefore be accepted as correct.

The phases of the structure factors were determined by the multisolution method (Germain, Main & Woolfson, 1971), with a program designed by Motherwell & Isaacs (1971). The structure factors were converted into their normalized form E. To fulfil the statistical demands for $\langle |E| \rangle$ and $\langle |E^2 - 1| \rangle$ listed in Table 2, the scale and isotropic temperature factors were modified using the information of *all* scanned reciprocallattice points.

Table 2. Di	'rect-methods a	lata of PTT
-------------	-----------------	-------------

		Theor	гy	Exp.		
<14	$E^2 - 1 \rangle$	0.736	5	0.806	acentric	
	51)	0.886	5	0.864	distribution	ו
Number	of E valu	es >1·5	is 2	.11		
	h k l	Ε		φ (radians))	
	1,10,5	3.17		0 1		
	2, 0,T	3.00		0 } orig	gin-defining	
	4, 1,4	2.51		$\pi/4$ pha	ses	
	2,12,4	2.88		$\pi/4, 3\pi/4,$	$5\pi/4, 7\pi/4$	
Solution	R _{Karle}	α'	t	$\langle \varphi \rangle$	$\langle \varphi \rangle$	Triplets
1	29	133	69	-0.034π	0.364π	5725
2	31	131	68	0.032π	0·454π	5630
3	17	170	81	-0.098π	0.494π	6157
4	16	173	81	-0.012π	0 ·464π	6274

See Kennard *et al.* (1972) and Drew *et al.* (1969) for the meaning of R_{Karle} , α_{Karle} , and t; $\alpha' = \alpha_{\text{Karle}} \sigma^{3/2} (2\sigma_3)^{-1}$.

The ideal situation for the fixation of the origin of a unit cell with space group $P2_1$ is the assignment of three zero phases to a general reflexion h1l and two

Fig. 1. Structural diagram and numbering of the molecule PTT.

reflexions h0l in parity groups h+k even and h+kodd. The additional requirements (large *E* values and several \sum_2 relations between them) could not, however, be met in our case. Similar difficulties were experienced during the structure determination of 5α , 17α -pregnane- 3β , 20α -diol (Romers, de Graaff, Hoogenboom & Rutten, 1974) crystallizing in the same space group. It was necessary to choose one special reflexion 201 and two general reflexions $1,10,\overline{5}$ and $41\overline{4}$ (see Table 2). The assigned phases 0, 0 and $0 < \varphi(41\overline{4}) < \pi/2$ simultaneously fix both the enantiomorph and the origin on a screw axis. The trial value $\varphi(41\overline{4}) = \pi/4$ ensures for a maximum phase error of $\pi/4$. To a fourth reflexion, 2,12,4, were given the trial phase values $\pi/4$, $3\pi/4$, $5\pi/4$ and $7\pi/4$.

Apart from the average absolute value $\langle |\varphi| \rangle$ ($\pi/2$ in the ideal case) solution 4 is better on all counts. This solution (Table 2) has the lowest R_{Karle} (Karle & Karle, 1966), the highest values for α' and t (Drew, Templeton & Zalkin, 1969) and uses the largest number of \sum_2 relations. The corresponding E map contained all heavy

Table 3. Observed (F_o) and calculated (F_c) structure factors $(10 \times absolute values)$ (the phases are not listed)

						1995-1985 1995						************		 5. 1012281881919			EXACCEUSEDE .	105400000555E		·
				autonenan autonenan		a fasta ta	12121-20-283		11 12 12 12 12 12 12 12 12 12 12 12 12 1			128715121243248		 122222222222	11023525598 ₅ =		2-16000000000	suiteritieses	***********	
		elsüstefarrat elsüstefarcat		. săuzăuzusuita arkuzuzuzuta			3.87 Factors 25		515625776, 16.P			259212285544		 and a state of the	CorrerGauter			Treus Series		
19190000000000000000000000000000000000				celtra Church. related for same			212222729		Ter Less Lide			*************		 	128.2222223			1		
				allan Australa Dise Australa		14 14 14 14 14 14 14 14 14 14 14 14 14 1			12122 121218			12521123255	10000000000000000000000000000000000000	 . Seenseiten	Same Provident			icdesitantiki		
				acreel Merson			1670543-404-1		átat 13131. An is			***********		 Conversion.	\$\$335.5.55		102270721011	**************************************		
				12238-1223		2.2.1998.1220	5255252525		1222222	100100100100		active action		 Non-Tan	EFfactsta Li		**********	1222222225		
		safağıtır. Xafağıtır			101111111	1015	22222.13		anti cura			100000		 Constraint,	112KE 1543		1004058	sessari95	*******	
		** **	 .::				« •				 11	2 128		1	, , 9 1			* 115		
		1 2	111		11	Ξų.		11	ä,	Ĩ		1		l	1	11	1.2	ų,	i	19
		######################################		70810×5×100					355-5r.te					 22920-1	2252322		LANKADESX	12531502		2228
		<u></u>		Tsurthundestance (1810)		1997.1997.1997.1997.1997.1997.1997.1997	25588222204000022202202		Creect JakKSSBagrad			***************		 30 87 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111111111111111111111111111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	112640552X227=75535	ETTERATOR EXCLOSED		
	· · · · · · · · · · · · · · · · · · ·	9~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······································				2558822220100000000000000000000000000000			0008074400840790740074007407401-300		***************************************		 225222222222222222222222222222222222222	1255157515125299757555555555555555555555		***************************************	*****************************		
			***************************************	เนื้อี สนักหา ปริสน แล้ว สลาย ประสาราชการที่สนายราย สนักสนา ให้มี แก้กระการการการการการการการที่ การการการการการการการการการการการการการก			25558272248829942599425998299829982294248239424829882944594445			***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11111111111111111111111111111111111111		 25.52.57 20. 2006208 25.52.52.52.52.52.52.52.52.52.52.52.52.5	10000000000000000000000000000000000000		***************************************	*****		
		ĔŦĸĔĸĔĸĊĸĊĸĊĸĊĸĊĸĊŶĊĊŎĊĊŎĊĊŎĊĊŎĊĊĊĊĊĊĊĊĊĊĊ		น แคลเป็นที่สามหนึ่งให้มาก ที่สนานี้การแหน่งหนึ่ง และการแม่ที่ความสามาร์ นายรัฐที่ประกรรรณ์ที่มีที่สะ - เหมือน สมัตรแรก แต่น กระบรรรณ์ สามาร์			2755827223010972012201220122001200174027405820740580223405114002234054405440544444444444444444444444		14月27日11日11日11日11日11日11日11日11日11日11日11日11日11	***************************************		***************************************	***************************************	 25.32. 5. 27.527.27.5.57.5.7.5.7.7.5.5.2.5.5.5.5.5	***************************************			非非非非可能的 计分子 化化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合	***************************************	
		, 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920. 1920		2019.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2			たいに目的には目的にはいるがほどかりに行いためにつかした日月的に回りりはいにからいもしののたいはいわけわれのという。 そそそうとそうとそうとそうとうとうとう、、、、、、、、、、、、、、、、、、、、		●14月2日回日約434月末後月大いりの日本2、2、2、2、2、2、1、1、1、1、1、1、1、1、1、1、1、1、1、1	n Den M Di Maken (ne Verner men ander ander 1990) den men den Manner men ander and			***************************************	 52952222222222222222222222222222222222				非非非非非非非非可以有有有有有有有的。"这时,这些是不是有有的人的是不是有的人们的是不是有的人们也不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是	***************************************	
		ਗ਼ਖ਼੶ਗ਼੶ਗ਼੶ਸ਼ੑਸ਼ੑਸ਼ਫ਼ਸ਼੶ਫ਼ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਸ਼ੑੑੑਖ਼ਸ਼੶ਗ਼ਸ਼੶ਗ਼੶ਗ਼੶ਗ਼ਫ਼ਖ਼ੵ੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ ਫ਼ਫ਼ਜ਼ਗ਼੶ਸ਼ਖ਼ਫ਼੶ਖ਼ਫ਼ਜ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼ਗ਼ਫ਼ਜ਼ਫ਼ਜ਼੶ਗ਼੶ਸ਼ਜ਼ਗ਼ਫ਼ੑਸ਼੶ਖ਼੶ਸ਼ਗ਼ਗ਼ਗ਼੶ਗ਼੶ਗ਼ਫ਼ਖ਼ਫ਼ਖ਼੶ਗ਼੶ਗ਼੶ਗ਼ਫ਼ਖ਼ਫ਼ਖ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶ਗ਼੶		נעלי בריאון אין אין אין אין אין אין אין אין אין אי		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			n der Breizen beste beste beste beste beste beste beste bester die der Beste beste Beste beste best		おおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおお	***************************************	 2563847 522 227 632 8 25 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(carateccyriatigres) ar adar yn adar yn san yn ar			***************************************	***************************************	

atoms plus a number of lower peaks belonging to a mirror image, which is related to the selected enantiomorph by an inversion operation. In view of the stated requirements the role of reflexions $1,10,\overline{5}$ and $41\overline{4}$ should have been reversed. It is remarkable that this defect in strategy did not hamper the analysis. Of course, the error was discovered after completion of the procedure.

Refinement

The minimization of least-squares residuals, isotropic during the initial cycles, anisotropic and including hydrogen positions during the consecutive steps, was a matter of routine. The scattering factors for carbon, nitrogen and oxygen were taken from *International Tables for X-ray Crystallography* (1962), those for hydrogen from Stewart, Davidson & Simpson (1965). The function minimized was $\sum (w|F_o| - |F_c|)^2$ with w = 1 during the isotropic stages and $w = \sigma_F^{-2}$ during the anisotropic refinement. In the final two cycles (cycles 10 and 11) the molecule was divided into two blocks, which were refined separately. The conventional and weighted R indices, $R = \sum |F_o - F_c| / \sum |F_o|$ and $R_w = \{\sum w(F_o - F_c)^2 / \sum wF_o^2\}^{1/2}$, dropped to 3.54 and 4.48% respectively.

The structure factors are listed in Table 3, the positional coordinates in Tables 4 and 5, and the vibrational parameters in Table 6. The respective average standard deviations, σ , for bond lengths C–O, C–N, C–C and C–H resulting from machine-computed e.s.d.'s in positional parameters are 0.0021, 0.0022, 0.0023 and 0.026 Å. Assuming chemical equivalence of C–C bonds in the benzene ring and of *all* C–H bonds we arrive at a conservative estimate of 0.0039 and 0.046 Å for standard errors in C–C and C–H bond lengths. More realistic estimates of standard deviations are therefore

Table 4. Fractional coordinates (104 units) of non-hydro-gen atoms

Estimated standard deviations in the least significant digit are given in parentheses.

	x	у	Z
C(1)	-1036(3)	1070 (1)	-263(3)
N(2)	329 (2)	1847 (1)	345 (3)
C(3)	1502 (3)	2100 (1)	2182 (3)
N(4)	1500 (2)	2996 (1)	2079 (2)
C(5)	92 (3)	3290 (1)	297 (3)
N(6)	- 504 (2)	2571 (1)	-833 (2)
C(7)	-2649 (3)	2395 (1)	-2304(3)
C(8)	- 4492 (3)	2052 (1)	-1169 (3)
C(9)	- 3562 (3)	1227 (1)	-10(3)
C(10)	-935 (3)	933 (1)	-2495(3)
C(11)	-2042(3)	1710(1)	-3739(3)
O(3)	2420 (2)	1659 (1)	3595 (2)
O(5)	-421 (2)	4028 (1)	-156(2)
C(12)	2839 (3)	3553 (1)	3537 (3)
C(13)	4839 (3)	3936 (1)	3092 (3)
C(14)	6093 (3)	4502 (1)	4476 (3)
C(15)	5366 (3)	4679 (1)	6275 (3)
C(16)	3375 (3)	4293 (1)	6712 (3)
C(17)	2095 (3)	3725 (1)	5335 (3)

the values 0.0029, 0.0031, 0.0033 and 0.037 Å for C–O, C–N, C–C and C–H bond lengths respectively. The corresponding standard deviations in valency and torsion angles involving the heavy atoms are 0.2 and 0.3° , respectively.

Discussion of the structure

The bond lengths and valency angles are depicted in Fig. 2(a) and (b). The difference between the smallest

Table 5. Fractional coordinates (10^3 units) and isotropic B values (10 Å^2 units) of hydrogen atoms

Estimated standard deviations in the least significant digit are given in parentheses.

	x	У	z	В
H(11)	-33(5)	63 (2)	74 (4)	19 (5)
H(71)	-319 (4)	290 (2)	- 295 (4)	9 (4)
H(111)	-478 (5)	246 (2)	-21(5)	22 (5)
H(112)	- 595 (5)	195 (2)	-230 (5)	20 (5)
H(101)	-453 (5)	75 (2)	- 51 (5)	24 (5)
H(102)	-361 (4)	122 (2)	150 (4)	16 (4)
H(91)	-174 (6)	44 (2)	-293 (5)	26 (5)
H(92)	78 (4)	87 (2)	-265 (4)	16 (4)
H(81)	-337 (5)	155 (2)	-467 (4)	13 (4)
H(82)	-95 (5)	202 (2)	-455 (5)	25 (5)
H(131)	543 (6)	379 (2)	183 (5)	28 (6)
H(141)	746 (5)	474 (2)	416 (4)	21 (5)
H(151)	619 (4)	505 (2)	718 (4)	16 (4)
H(161)	274 (5)	440 (2)	788 (5)	22 (5)
H(171)	71 (4)	343 (1)	561 (3)	5 (3)

Table 6. Thermal parameters U_{ij} (10³ Å² units) of nonhydrogen atoms

Estimated standard deviations in the least significant digit are given in parentheses. The temperature factor is defined by

	$\exp\left[-2\pi\right]$	²∑ıjhıhja	$a_i^*a_j^*U_{ij}],$	i, j = 1	,2,3.	
	U_{11}	U_{22}	U_{33}	$2U_{12}$	$2U_{23}$	$2U_{13}$
C(1)	16 (1)	7 (1)	20 (1) -	-2(1)	-2(1)	0 (1)
N(2)	16 (1)	4 (1)	18 (1)	1(1)	2 (1)	-1(1)
C(3)	13 (1)	6 (1)	18 (1)	0 (1)	-4(1)	5 (1)
N(4)	16 (1)	5 (1)	14 (1) -	-1(1)	-1(1)	0 (1)
C(5)	15 (1)	8 (1)	14 (1) -	-3(1)	0 (1)	0 (1)
N(6)	18 (1)	5 (1)	15 (1) -	-2(1)	1 (1)	-1(1)
C(7)	14 (1)	10 (1)	14 (1) -	-2(1)	0 (1)	0 (1)
C(8)	15 (1)	14 (1)	26 (1)	5 (1)	2 (1)	18 (1)
C(9)	17 (1)	15 (1)	20 (1) -	-6(1)	2 (1)	9 (1)
C(10)	17 (1)	13 (1)	23 (1)	1 (1)	-15(1)	5 (1)
C(11)	20 (1)	16 (1)	15 (1) -	-6(1)	-7(1)	7 (1)
O(3)	19 (1)	9 (1)	20 (1)	4 (1)	3 (1)	-4(1)
O(5)	25 (1)	6 (1)	22 (1) -	-2(1)	6 (1)	-6(1)
C(12)	14 (1)	7 (1)	15 (1) -	-1(1)	0 (1)	1 (1)
C(13)	16 (1)	12 (l)	19 (1)	0 (1)	1 (1)	8 (1)
C(14)	15 (1)	11 (l)	27 (1) -	-4(1)	6 (1)	0 (1)
C(15)	22 (1)	7 (1)	23 (1)	0 (1)	0 (1)	-9 (l)
C(16)	23 (1)	12 (1)	15 (1)	3 (1)	-3(1)	2 (1)
C(17)	15 (1)	10 (1)	17 (1)	-1(1)	0 (1)	6 (1)

and largest $C(sp^3)-C(sp^3)$ distance is 0.025(5) Å. Such variation is quite common and needs no comment. The C-H bond lengths, varying between 0.90 and 1.04 Å, are listed in Table 7. The sums of valency angles involving the nitrogen atoms N(2), N(6) and N(4) amount to 353.7, 350.3 and 359.9° respectively. The first two sums, significantly deviating from 360° by amounts of 6.3 and 9.7°, point to a pyramidal configuration of N(2) and N(6), while N(4) clearly shows a planar hybridization of its bonds.

Fig. 2. (a) Bond lengths (Å), (b) valency angles, (c) indication of rings and least-squares planes.

Fig. 3. Newman projections along (a) C(10)-C(11), (b) C(9)-C(8), (c) $C(1)\cdots C(7)$, (d) N(2)-N(6) and (e) N(4)-C(12).

Table 7. Intramolecular C-H bond lengths (Å) of PTT

C(1)-H(11)	1.00	C(9)—H(92)	1.03	C(13)-H(131)	1.00
C(7) - H(71) C(8) - H(81)	0·93 0·94	C(10) - H(101) C(10) - H(102)	0·96 1·02	C(14) - H(141) C(15) - H(151)	0·94 0·90
C(8)–H(82)	1.04	C(11)-H(111)	0.94	C(16)-H(161)	0.94
C(9)–H(91)	0.92	C(11)-H(112)	1.04	C(17)-H(171)	0.98

Although the average *twist* about the axis C(1)... C(7) [2.7°, see Fig. 3(c)] is about the same as that reported by Cameron et al. (1968) for BOO (3°) and is also in reasonable agreement with an average twist motion of about 7° for BOD and unsubstituted bicyclo[2,2,2]octane, the bicyclo[2,2,2]-like moiety of PTT has no D_3 or C_3 symmetry. Neither is there found an indication for a *twisting* about the $C(1) \cdots C(7)$ axis, the largest principal axes of thermal ellipsoids of atoms N(2), N(6), C(8), C(9), C(10) and C(11) deviating by 10, 15, 69, 50, 48 and 62° respectively from the direction $C(1) \cdots C(7)$. We have also inspected the thermal motion of the whole molecule in terms of rigid-body movement (Schomaker & Trueblood, 1968). The agreement between calculated and observed matrix elements U_{ii} is, however, rather poor. Low-temperature diffraction data are not very well suited to inspection of thermal vibrations and we realize that the outcome of our thermal analysis is inconclusive with respect to a twist as well as rigid-body motion.

Except torsion angle H(102)-C(10)-C(11)-H(112)[see Fig. 3(*a*), (*b*) and (*c*)] which has an opposite sign, the distortions about C(10)-C(11), C(9)-C(8) and $C(1)\cdots C(7)$ are consistent. In view of the relatively large uncertainty in the positions of the hydrogen atoms the deviation of the exceptional dihedral angle is not disturbing.

Fig. 4. ORTEP projection of PTT. The thermal ellipsoids of the non-hydrogen atoms are scaled to enclose 75% probability.

Fig. 3(d) again demonstrates the pyramidal hybridization of N(2) and N(6). Finally Fig. 3(e) shows that the benzene ring is neither perpendicular nor parallel to the average plane of ring *D*. The overall molecular shape which lacks any symmetry is depicted in Fig. 4.

The endocyclic torsion angles of rings A, B, C and D together with a number of dihedral angles between the least-squares planes A', B', D' and F' are listed in Table 8. The conformations of rings A, B and C are, of course, slightly distorted tub-boats, while ring D is a nearly ideal envelope with N(4) as flap.

Packing

A part of the packing is illustrated (Fig. 5) in a projection along [100]. The molecules are inclined towards [010] by an angle of approximately 45° , resulting in a herringbone type of packing.

There are 66 contacts of the types $H \cdots H$, $O \cdots H$, $N \cdots H$ and $C \cdots H$ smaller than 3.0 Å, and molecule (I) at position x, y, z is surrounded by 14 neighbouring molecules. The shortest contact (2.36 Å, Table 9) is of the type $H \cdots H$; the shortest $O \cdots H$ interaction involving the screw-axis operation between molecules (I) and (VIII) amounts to 2.58 Å. The tight packing and the large coordination number are in agreement with the fairly high density (1.36 g cm⁻³).

All calculations were performed on a 360/65 computer of the University of Leiden. The authors are indebted to Dr G.C. Verschoor for experimental assistance and to Mrs E.W.M. Rutten for computational aid.

References

ALTONA, C. & SUNDARALINGAM, M. (1970). J. Amer. Chem. Soc. 92, 1995–1999.

Altona, C. & Sundaralingam, M. (1972). Acta Cryst. B28, 1806–1816.

Table 8. Endocyclic torsion angles and additional dihedral angles between least-squares planes A'(1,10,11,7), $B'(1,N_2,N_6,7), C'(1,9,8,7), D'(five-membered ring)$ and F'(benzene ring)

Ring A		Ring C		
C(9) - C(1) - N(2) - N(6)	57·6°	C(9) - C(1) - C(1)	C(10) - C(11)	- 61.9
C(1) - N(2) - N(6) - C(7)	4.2	C(1) - C(10)	$\dot{(11)} - \dot{C(7)}$	4.2
N(2)-N(6)-C(7)-C(8)	-62.0	C(10) - C(11) - C(11)	C(7) - C(8)	57.6
N(6) - C(7) - C(8) - C(9)	54·0	C(11) - C(7) - C(7)	C(8) - C(9)	- 63.5
C(7) - C(8) - C(9) - C(1)	5.5	C(7) - C(8) - C(8)	C(9) - C(1)	5.5
C(8) - C(9) - C(1) - N(2)	<i>−</i> 61·0	C(8)C(9)C	C(1) - C(10)	56.1
Ring B		Ring D		
C(10)-C(1)-N(2)-N(6)	- 60.6	N(6)-N(2)-C(3	3)—N(4)	- 3.4
C(1) - N(2) - N(6) - C(7)	4.2	N(2)-C(3)-N(3)	(4) - C(5)	7.4
N(2) - N(6) - C(7) - C(11)	56.3	C(3) - N(4) - C(3)	5)N(6)	- 8.5
N(6) - C(7) - C(11) - C(10)	- 58.9	N(4) - C(5) - N(6)	6)-N(2)	6.1
C(7) - C(11) - C(10) - C(1)	4.2	C(5) - N(6) - N(6)	2)-C(3)	-1.8
C(11)-C(10)-C(1)-N(2)	53.6			
Dihedra	l angles			
A'/B'	120.6°	C'/D'	27·8°	
A' C'	121.1	$\widetilde{D'}/\widetilde{F'}$	75.3	
B' C'	118.3	- /-		

Molecule	Position	Interaction	Number	Average	Minimum
(11)	x, v , $1+z$	$\mathbf{H} \cdots \mathbf{H}$	4	2.69	2.40
â	x, $v_{1} - 1 + z$	$0 \cdots H$	2	2.56	2.53
()		$\mathbf{C}\cdots\mathbf{H}$	1	3.00	3.00
		$N \cdots H$	1	2.95	2.95
(\mathbf{IV})	1 + x, v, z	$\mathbf{H} \cdots \mathbf{H}$	4	2 .68	2.52
(V)	-1+x, y , z	$\mathbf{O} \cdots \mathbf{H}$	2	2.86	2.73
(.)		$\mathbf{C} \cdots \mathbf{H}$	1	2.99	2.99
(V I)	1+x, v , $1+z$	$\mathbf{O}\cdots\mathbf{H}$	3	2 ·74	2.52
N ÍD	-1+x, y , $-1+z$	$\mathbf{C} \cdots \mathbf{H}$	3	2.90	2.85
(VIII)	$-x, \frac{1}{2}+y, -z$	$\mathbf{O}\cdots\mathbf{H}$	1	2.58	2.58
(IX)	$-x, -\frac{1}{2}+y, -z$	$\mathbf{C} \cdots \mathbf{H}$	2	2.96	2.95
(X)	$-x, \frac{1}{2}+y, 1-z$	$\mathbf{H}\cdots\mathbf{H}$	5	2.77	2.64
(XI)	$-x, -\frac{1}{2}+y, 1-z$				
ÌXÍ	$1-x, \frac{1}{2}+y, 1-z$	$0 \cdots H$	1	2.73	2.73
(XIII)	$1-x, -\frac{1}{2}+y, 1-z$	$\mathbf{H} \cdots \mathbf{H}$	1	2.72	2.72
(XIV)	$1-x, \frac{1}{2}+y, z$	$\mathbf{H} \cdots \mathbf{H}$	2	2.67	2.36
(XV)	$1-x, -\frac{1}{2}+y, -z$				

Table 9. Intermolecular contacts (Å) between molecule (I) (x,y,z) and neighbouring molecules at positions indicated

Fig. 5. The packing of PTT molecules in a projection along [100]. The Roman numerals are explained in Table 8.

ASKANI, R. (1965). Chem. Ber. 98, 2551-2555.

- BOLHUIS, F. VAN (1971). J. Appl. Cryst. 4, 263.
- CAMERON, A. F., FERGUSON, G. & MORRIS, D. G. (1968). Chem. Commun. p. 316.
- DREW, M. G. B., TEMPLETON, D. & ZALKIN, A. (1969). Acta Cryst. B25, 261–267.
- ERMER, O. & DUNITZ, J. D. (1969). Helv. Chim. Acta, 52, 1861–1886.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368–376.
- GILLIS, B. T. & HAGARTY, J. D. (1967). J. Org. Chem. 32, 330-333.
- HAMEETEMAN, W., DE MAN, J. D. & ALTONA, C. (1972). Unpublished.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.

 KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849–859
KENNARD, O., ISAACS, N. W., MOTHERWELL, W. D. S., COPPOLA, J. C., WAMPLER, D. L., LARSON, A. C. & WAT-

- son, D. G. (1971). Proc. Roy. Soc. A 325, 401–436.
- MOTHERWELL, W. D. S. & ISAACS, N. W. (1971). Acta Cryst. A 27, 681-682.
- OFFEREINS, B., ALTONA, C. & ROMERS, C. (1973). Acta Cryst. B29, 2098–2103.
- ROMERS, C., DE GRAAFF, R. A. G., HOOGENBOOM, F. J. M. & RUTTEN, E. W. M. (1974). Acta Cryst. B30, 1063–1071.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63-76.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- YOKOZEKI, A., KUCHITSU, K. & MORINO, Y. (1970). Bull. Chem. Soc. Japan, 43, 2017–2026.